
International Journal of Theoretical Physics, Vol. 33, No. 2, 1994 

Kinematical Similarity and Exponential Dichotomy of 
Linear Abstract Impulsive Differential Equations 

D. D. Bainov, 1 S. I. Kostadinov, t and A. D. Myshkis z 

Received March 9, 1992 

The notions of kinematical similarity and exponential dichotomy for linear 
abstract differential equations are extended to impulsive equations. The funda- 
mental properties of these notions for Banach and Hilbert spaces are investi- 
gated. 

1. INTRODUCTION 

The work of  V. D. Mil 'man and A. D. Myshkis (1960) initiated 
the theory of impulsive differential equations. In recent years this theory 
has undergone rapid development. The monographs of Samoilenko and 
Perestyuk (1987), Bainov and Simeonov (1989), and Lakshmikantham 
et aL (1989) were starting points for new investigations devoted to this 
subject. 

Investigations devoted to abstract impulsive differential equations have 
recently appeared (Zabreiko et al., 1988; Bainov et aL, 1988a-c, 1989a-c, 
1990, n.d.-a,b). In the present paper these investigations are continued and 
numerous properties of the notions kinematical similarity and exponential 
dichotomy are considered. 

2. STATEMENT OF THE PROBLEM 

Let X be a Banach space with identity operator 1. By L(X) we shall 
denote the space of all linear bounded operators mapping X into X. Let J 
be a subinterval of  R = ( -  oo, oo) which contains [0, oo). 
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Consider the impulsive differential equation 

dx 
--~ = A( t )x  (t ~ {t.  }) (1) 

x(t  + ) = Q.x ( t . )  (2) 

We shall say that Condition A is met if the following conditions hold: 
A1. The sequence T = {to }~= -oo satisfies 

t , < t , + l  ( n e Z ) ,  lim t , = + o o  
n---~ -F o o  

A2. A(t) e L(X) ,  t e J \ { t ,  }, and A(.) is a continuous function on each 
nonempty interval [to, to+ l] c~J(n e Z). 

A3. Q, e L (X)  for all n for which t, e J. 

Definition 1. A solution of equation (1), (2) we shall call a function 
x(t) with values in X which is differentiable and satisfies for t ~ to equation 
(1), for t = tn has discontinuities of the first kind, and is continuous from 
the left and meets the condition of a " jump" (2). 

An operator-valued function U(t, z) associating with each element 
x, e X (t, z e J, z <- t) just one solution x(t) = U(t, z)x,  of (1), (2) for which 
x(z) = x, is said to be an evolutionary operator of (1), (2) (Zabreiko et al., 
1988; Bainov et al., 1989b). 

It is not hard to check that for z, t e J the following equalities are 
valid: 

U ( t - ,  ~) = U(t, z - )  = U(t, z) (z < t) 

U(t, t) = I 

U(t, s) = U(t, z)U(z, s) (z < s < t) 

U;(t, * )= A(OU(t,  *) (z < t, t e { t . } )  

U'(t ,  ~) = - U(t, z)A(z) (t > z e ( t .  }) 

U(t + , z) = Q. u ( t . ,  z) (z < t .)  

For ~ = 0 instead of U(t, 0) we shall write U(t). 

Lemma I. Let Condition A hold. Then the evolutionary operator 
U(t, ~) (z < t; z, t e J )  has the form 

[ Uo(t, z), t. < ~ < t < to+ 1 

U(t, T) = ~ Uo(t, t . )Q.  Uo(t., t ._  i ) " "  Qk + l Uo(tk + l, tk)QkUo(tk, "c) 

[ ( t k - x < z  <tk  < t . < t < t . + l )  
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where Uo(t, v) (~ < t; z, t ~ J)  is the evolutionary operator of  the equation 

dx 
d-7 = A(t)x 

Lemma 1 is proved by a straightforward verification. 
We shall say that Condition B is met if the following holds: 
B. The operators Q. have bounded inverse operators. 

Lemma 2. Let Conditions A and B hold. Then the evolutionary 
operator U(t, ~) is defined for all t, z ~ J and for t < z has the form 

[Uo(t, z) (t. < t < z <- t.+ l) 
U(t, z) = ~Uo(t, t .)Q~lUo(tn, tn+ i ) " "  Q~11Uo(tk_ 1, tk)Qk-muo(tk, Z) 

[ ( t n - , < t < t . < t k < z < t k + l )  

Lemma 2 is proved by a straightforward verification. [] 

3. MAIN RESULTS 

3.1. Impulsive Equations in a Banach Space 

Let X~ and X2 be two nonzero subspaces of  X. Set 

S , ( X 1 , X 2 ) =  inf x ~ [ [ +  x22][ 
xl ~ xl\{o},x2 ~ x2\{0} 

Lemma 3 (Daleckii and Krein, 1974, Chapter IV, Lemma 1.1). Let X 
split into a direct sum of nonzero subspaces XI and )(2, i.e., X = X1 -i- )(2, 
with projectors P1 and/ '2,  respectively, and X1 = P1 X, )(2 = P2X, PI + P2 = L 

Then the following estimate is valid: 

1 2 
IIe~ I[ -< S , (X , ,  )(2) ~ ilPk [-----~ (k = 1, 2) 

Definition 2. Let conditions A and B hold. The subspace Y1 = X is 
said to induce an exponential dichotomy for the impulsive equation (1), (2) 
on the interval J if there exists a subspace Y2 c X such that X = Y1 + Y2 
and the following conditions are met: 

(i) For the solutions xl (t) = U(t)x~ of (1), (2) with x01 s Y the estimate 

[[xl(t)[l <_ Nl e-~,(t-')llxl(s)[ I (s < t; s, t ~ J) 

is valid, where v~, NI > 0 are constants independent of x~. 
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(ii) For the solutions x2( t )=  U(t)x 2 of (1), (2) with x~e  Y2 the 
estimate 

Ilx=(OIl <_N=e-..(.-Ollxz(s)ll (t <s;t ,  s E J )  

is valid, where v2, N2 > 0 are constants independent of xo 2. 
(iii) Sn(X~(t), X2(t ) )>y  > 0  (t e J), where Xk(t)= U(t)Yk (k = 1, 2) 

and 7 is a constant. 

Remark I. From Lemma 3 it follows that condition (iii) is equivalent 
to uniform boundedness of the projector-valued functions Pk(t)= 
U(OPkU-1(t) (t ~ J ; k  = 1, 2), where Pk are the projectors correspond- 
ing to the splitting X = Y~ -[- II2, i.e., PkX = Yk (k = 1, 2), Pa + P2 = L 

Definition 3. The impulsive equation (1), (2) is said to be exponentially 
dichotomous on J if there exists a subspace Y~ c X which induces an 
exponential dichotomy for (1), (2). 

Lemma 4. Let Conditions A and B hold for equation (1), (2). Then 
(1), (2) is exponentially dichotomous if and only if there exist projectors P1 
and P2 (P~ + P2 = I) and positive constants 371,372, •1 and v2 such that 

IlV(t)elu-l(s)[l<-371 e-v'~t-') ( s < t ; s , t ~ J )  

HU(OP2U-1(s)II < 372e -v2(s-t) (t < s;s , t  ~J)  

The proof of Lemma 4 is a simple modification of the proof of Lemma 
3.1, Chapter IV, of Daleckii and Krein (1974). 

Lemma 5. Let the following conditions hold: 

1. Conditions A and B are met for equation (1), (2). 
2. The subspace Y~ ~ X induces an exponential dichotomy for equa- 

tion (1), (2), i.e, there exists a subspace Y2 = X such that X = Yl -[- Yz and 
conditions (i)-(iii) are met. 

3. Let Y2 be a subspace of  Y for which X = Y~ -i- Y2 and for which 

IIU(t)PEU-'(t)II <- M (t e Y) 

where/~2 is the projector corresponding to ~2, i.e., 

Then for the space Y2 condition (ii) is met with possibly another 
constant 372 . 

The proof of Lemma 5 is a modification of the proof of Remark 3.4, 
Chapter IV, of Daleckii and Krein (1974). 
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Consider the impulsive equation 

dy 
dt = .~(t)y (t ~ {tn }) (3) 

y(tn +) = Q,y(t~) (4) 

Let Condition A hold for equation (3), (4). 

Definition 4. The impulsive equations (1)-(2) and (3)-(4) are said 
to be kinematically similar if there exists an operator-valued function 
S(t): J ~ L(X)  for which the following conditions are valid. 

1. S(t) is uniformly bounded (t s J). 
2. S(t) is continuous for t ~ {t. }. 
3. S(t) has points of discontinuity of the first kind at t = tn, where it 

is continuous from the left. 
4. S(t) has a bounded inverse one (t ~ J). 
5. If x(t) is a solution of (1), (2), then S(t)x(t) is a solution of (3), (4) 

and vice versa. 

Lemma 6. Let Conditions A and B hold for the impulsive equations 
(1)-(2) and (3)-(4). Then for (1)-(2) and (3)-(4) to be kinematically 
similar it is necessary and sufficient for there to exist a bounded operator- 
valued function S: J ~ L(X)  which is differentiable for t e {tn }, continuous 
from the left, has a bounded inverse one, and is a solution of the operator 
impulsive equation 

S' = A(t)S - SA(t) (t ~{t, }, t ~ J )  (5) 

S( t~ + ) = O,S(  tn)a s 1 (6) 

Moreover, for the evolutionary operators U(t) of (1)-(2) and of 
(3)-(4) the following formula is valid: 

s (o  = O(t)s(o)u- '( t)  (7) 

The proof of Lemma 6 is trivial. 

Theorem 1. Let the following conditions hold: 

1. For equation (1), (2) Conditions A and B hold. 
2. Equation (1), (2) is exponentially dichotomous. 
3. Equations (1)-(2) and (3)-(4) are kinematically similar with trans- 

forming function S(t). 

Then equation (3), (4) is also exponentially dichotomous. 
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Proof. Let U(t), respectively [7(t), be the evolutionary operators of 
(1)-(2) and (3)-(4). By (7) the following equality is valid: 

O(t) = S(t)U(t)S-1(0) 

Set Pk = S(O)PkS-~(O) (k = 1, 2; Pl + PE = I). Then 

O(t)PkO-'(s) = S(t)U(t)PkU-l(s)S(s) (k = 1, 2) 

The assertion of Theorem 1 follows from the above equality and Lemma 4. 
Theorem 1 is proved. [] 

3.2. Impulsive Equations in a Hilbert Space 

In this section we assume that X is a real Hilbert space with scalar 
product ( . ,  .). 

Lemma 7. Let the subspace Y1 of the space X induce an exponential 
dichotomy. 

Then without loss of generality we can assume that the projector 
P1: X--* YI (which enters the definition of dichotomy) is Hermitian (i.e., 
self-adjoint). 

Proof. Let Y2 be the orthocomplement of Y1. Then the projector 
P~ : X-o y~ with kernel ker(P~) = IrE is the Hermitian operator sought. [] 

Theorem 2. Let the following conditions hold: 

1. The Hermitian projectors P1 and P2 are given and PI + P2 = I and 
X = X~ -i- X2, where Xk = P~X (k = 1, 2). 

2. For equation (1), (2) Conditions A and B hold. 
3. There exists a constant M > 0 for which 

IIu(t)PkU-l(t)ll M (k = l ,2; t S) 

Then the impulsive equation (1), (2) is kinematically similar to the 
impulsive equation with function ~(t) and impulsive operators Q, which 
commute with the projectors Pk (k = 1, 2) and, moreover, the following 
estimate is valid: 

1If(t) +2" ( / ) [  I < IlA(t) + A*(t)]l (t s J) (8) 

Proof. Set 

RE(t) = P~ U*(t)U(t)P1 + P2 U*(t)P2 (9) 

It is not hard to check that the operator R2(t) for each t e J is uniformly 
positive and Hermitian. Let R(t) he a positive square root of R2(t). We 
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recall that from the general Poincar~-Riesz formula there follows the 
representation 

1 ~r x/~[R2(t) - 21]--1 d~ (10) R( t) = - ~ixi , 

where Ft is a smooth contour which continuously depends on t, encircles 
the spectrum of the operator R2(t), lies in the half-plane Re 2 > 0, and 
passes in the positive direction. By V/2 we denote the principal value of  the 
root. The operator R(t)  is also Hermitian. Since R2(t) commutes with Pk, 
then by (10), R(t)  also commutes with Pk (k = 1, 2). 

Consider the operator-valued function S(t) = R ( t ) U - l ( t )  (t ~ J) .  Tak- 
ing into account formula (10), it is not hard to check that the operator-val- 
ued functions S(t)  and S- l ( t )  are differentiable for t ~ {t, }, have points of  
discontinuity of  the first kind, at t = t, and are continuous from the left 
(t ~ J).  

We shall show that the function S(t) (t ~ J )  is bounded. From the 
equalities 

S * S  = ( U -  I ) , R 2 U  - 1 = (UP~ U -  1),(Up1 U-1 )  + (UP2 U -  1), UP2 U -  1 

there follows the estimate 

[[S[I 2 ~ IIUP, U- ' I [  = + I[UP2U-'[[ <_ M 2 + M 2 < oo 

We shall show that the function S - 1 =  U R -  1 is also bounded indeed, 

P I ( S - 1 ) * S - 1 P  1 + P 2 ( S - 1 ) * S - 1 p 2  

= p 1 R - 1 U * U R - I p  1 + P 2 R - I U * U R - I P  2 

= R - I ( P I  U 'UP1  + P 2 U * U P 2 ) R  - l  = I 

Let z ~ X be an arbitrarily chosen element. Then 

IIs-1z112 = I[s-1P, z + s-IP=zll = 

_< 2 l l s - l P l z l l  2 + 211s-'e=zll ~ 

= 2 ( S - 1 P l z ,  S - 1 P l Z )  + 2 ( S - 1 p z z ,  S - 1 P 2  z) 

= 2(P~(S-~)*S- 'P~z,  z) + 2(P2(S-1)*S-1P2z, z) 

= 2(z, z) = 2llz[[ 2 

Choose the function S as a function of  kinematical similarity. Then by 
formula (5) 

.~ = S A S  - l  + S ' S  -1 
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i.e., taking into account the formula ( U - l )  t = - -  U - I U t U  - 1  = - U-1A,  we 
get 

X = R U - I A U R - a  + ( R ' U - ~ - - R U - ~ A ) U R - I = R ' R  -~ (11) 

For the impulsive operators, by formula (6) we obtain 

~ = S(t + ) Q " S -  ~(t.) = R(t + ) U -  ~(t~)Q; ~ a .  U(t.)R-~(t~) 

= R( t  + ) R - ~ ( t . )  

The evolutionary operator of  the new impulsive equation is O ( t ) =  
S(t)U(O = R(t). It is not hard to check that the operators 2(t) and 0.. 
commute with Pk (k = 1, 2). 

We shall prove inequality (8). Differentiate equality (9): 

RR'  + R ' R  = P~ U*(A* + A)UP~ + P2U*(A* + A)UP2 

For z ~ X the following equality is valid: 

( (RR'  + R'R)z ,  z) = ( (a* + A)UP1z , UPIZ ) + ((.,4* + A)UP2z , UP2z ) (12) 

For each t ~ Y set/~(t) = IIA*(0 + A(t)I[" From (12) we obtain the estimate 

( (RR t + RtR)z,  z) <-~ ~(t){(UP1z , UPIZ ) --~ (UP2z , Ueuz)} 

= #(0(R22, z) = t~(t)IIRz II 2 (z ~ x ,  t ~ S) 

From this, taking into account the equality RR" + R ' R  = R(X + X*)R  [see 
(11)] and setting v = Rz, we obtain the inequality 

+ v) IIv II 2 
i.e., 

IIX(t) + X*(0  II ~ B(0 = [[A(t) + h * ( 0  [1 (t ff J) 

Theorem 2 is proved. [] 

Remark Z If  the conditions of Theorem 2 are met, then 

II (oll tiM(011 (t 
Remark 3. From the fact that the operators .~(t) and ~ ,  commute 

with the projectors Pk (k = 1, 2) it follows that the impulsive equation 

.t = R ' R - ' y  (t {t.}) (13) 

y(t + ) = R(t + )R - l ( t . )y ( t . )  (14) 

can be split into a system of two equations, each for the respective subspace 
Xk = e k X  (k -- 1, 2). 
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Corollary I. Let the conditions of Theorem 2 hold, the operators 
being unitary, i.e., Q* = Q~-I. 

Then equation (1), (2) is kinematically similar to an equation without 
impulse effect, i.e., 0 ,  = L If, moreover, the equality 

A(t+ )Q, = anA(tn) (tn ~ J) 

is valid, then the operator-valued function ~(t) is continuous for t ~ J. 

Proof From Theorem 2 it follows that the given equation is kinemat- 
ically similar to equation (13), (14), where R is a positive square root of the 
operator R 2 defined by equality (9). Then 

U*(t + )U(t + ) = U*(t~)a* Q. U(t.) = U*(t.)U(t~) 

Hence R ~, and therefore R as well, are continuous for t e J, i.e., Qn = L 
Let, moreover, A(t+ )Q. = Q.A(t.). Then 

(V*U)'lt=,+ = (U*A*U + U*AU)It= ,+ 

= U*(G)Q*A*(t + )Qn U(tn) + U*(t.)Q*A(t + )Qn U(t~) 

= U*(G)A*(t.)Q* Qn u(t . )  + u*(t~)Q* QnA(G)U(t.) 

= ( v * A * v  + v * A v ) l , = , .  = v ' v ) 1 , = , .  

The result obtained shows us that the function (U'U)" is continuous 
for t E J, whence by formula (9) there follows the continuity of the function 
[R2(t)] ". Formula (10) implies the continuity of the function R', and 
therefore of A = R ' R -  l as well. 

Corollary 1 is proved. �9 

Theorem 3. For equation (1), (2) let Conditions A and B hold and 
J = [0, oo). 

Then the impulsive equation (1), (2) is kinematically similar to an 
impulsive operator whose operator and impulse operators are Hermitian. 

Proof The operator A can be represented in the form A = A1 + A2, 
where the operator AI = ~ A  +A*)  is Hermitian and A z = ~ ( A - A * )  is 
skew-Hermitian, i.e., A~' = - A z .  The operator Q*,Q, is Hermitian and, 
moreover, for each element z ~ X, Ifzll = 1, the estimate 

1 
(Q*~ Q,z, z) = IlQ.zl[ = >- IIQ: ~ Ilzll = > 0 

is valid, i.e., Q*Q, is positive definite. 
We represent the impulse operators Q, in the form 

Q. = T.(Q*Q.)  '/: (15) 

where the operators Tn are unitary. 
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Consider the impulsive equation 

dy 
dt  = A2(t)Y (t ~ {t. }) (16) 

y(t  + ) = T .y ( t . )  (17) 

We shall show that the evolutionary operator V(t) of this equation is 
unitary. For t # t, the following equalities are valid: 

(V* V)" = V ' A *  V + V ' A 2  V = - V ' A 2  V + V ' A 2  V = 0 

i.e., V* V = const on each interval (t,, t, + 1 ] c~ J. 
Moreover, 

v*(t +) v(t +) = V * ( t . ) T *  T. V(t.) = V*(t.) V(t.) 

i.e., V*V=const  on the whole interval J. Since V(0) = / ,  then 
V*(t)V(t) --- V*(0)V(0) = / ,  i.e., the operator V(t) (t > 0) is unitary, hence 
it is bounded and has a bounded inverse one. 

The operator-valued function V - l ( t )  transforms equation (1), (2) into 
an equation kinematically similar to it with operator .~ and impulse 
operators Q, which we obtain according to formulas (5) and (6) 

= v -  1a V + ( V - ' ) ' V  = V*(.4 V - V')  = V*(.4 V - A2 V) 

1 
= ~ V*(A + A*)V 

from which it immediately follows that the operator .4 is Hermitian. For On 
we respectively obtain 

0 ,  = V-!(t  +)Q. V(t ,)  

Since the operator-valued function V(t) is a solution of the impulsive 
equation (16), (17), then V ( t y )  = T , V ( t , ) ,  i.e., 

O* = v*(t.)Q* T. V(t.) (18) 

From equality (15) and from the fact that the operator T, is unitary 
there follows the validity of the equality 

Q * T ,  = T * Q ,  (19) 

which implies 0* = 0,- 
Theorem 3 is proved. �9 

Corollary 2. If the impulse operators Q, are unitary, then the impul- 
sive equation (1), (2) is kinematically similar to an equation without 
impulses and with Hermitian operator. 
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Proof. Consider a kinematical similarity with transforming function 
V-~(t). Then from formulas (18) and (19) we obtain 

0_* = ( V - ~ ( I n ) T ~ Q  * -~ V*- l ( tn )  ) --I = (V*(t~)T* Q. V(tn)) -~ = 0_.~ ~ 

Corollary 3 is proved. II 
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